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Digital microfluidics (DMF) has the signatures of an ideal liquid handling platform – as shown through

almost two decades of automated biological and chemical assays. However, in the current state of DMF,

we are still limited by the number of parallel biological or chemical assays that can be performed on DMF.

Here, we report a new approach that leverages design-of-experiment and numerical methodologies to

accelerate experimental optimization on DMF. The integration of the one-factor-at-a-time (OFAT)

experimental technique with machine learning algorithms provides a set of recommended optimal

conditions without the need to perform a large set of experiments. We applied our approach towards

optimizing the radiochemistry synthesis yield given the large number of variables that affect the yield. We

believe that this work is the first to combine such techniques which can be readily applied to any other

assays that contain many parameters and levels on DMF.

Introduction

Digital microfluidics (DMF) is a liquid-handling technique
capable of automating complex biological1–5 and chemical
assays.6–10 Droplets are placed on an array of electrodes that
are deposited with a dielectric and coated with a hydrophobic
layer. Users are able to create droplet actuation sequences11,12

such that droplets can move, dispense, merge, split, and
mix13–16 simply through applying electrical potentials to an
electrode. The advantages of automation have enabled DMF
to be applied to multiple areas including rapid
diagnostics,17–20 cell-based screening assays,4,21 and
optimization of chemical synthesis parameters.7,22–25 These
assays are well-suited to be implemented on digital
microfluidic devices given the precise control of individual

samples, allowing for multistep series of reactions and
multiple conditions to be executed and analyzed on a device.

While there are many types of biological and chemical
assays that can be implemented on a DMF device, the
number of experiments that can be performed in parallel is
limited. The main reason for the limitation is the number of
electrodes that can be accommodated on a single DMF
device. The low electrode density only allows for tens of
reactions to be performed in parallel. There are physical
solutions to increase the electrode density (and to increase
reactions in parallel): vertical addressing techniques,26–29

inkjet-printing techniques,30 and three dimensional stacking
of substrates;31 however, there continues to be limits on the
number of reactions or conditions that can be handled on
the platform due to unreliable droplet movement, μL-volume
requirements, and evaporation or biofouling challenges.

One method that optimizes screening conditions without
physical implementation is the use of machine learning.
Machine learning has the ability to predict the performance
of your assay based on your input parameters that affect the
assay and models the output response without costly
fabrication and design iterations. Currently, the pairing of
microfluidics and machine learning has been used for
optimizing droplet generator designs,32 tumor cell
classification,33 and image-based cell sorting techniques.34

Using these methods together, the authors were able to
perform a set of experiments on the device and develop
models to predict the output.35,36 Microfluidic-based
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optimization studies can also benefit from design-of-experiments
(DoE) including full factorial37,38 and fractional factorial39,40

designs for an efficient screening of a multiparameter assay. These
demonstrations, though few, represent the power of coupling
microfluidics with either machine learning or DoE together.

Here, we report a new method for assay optimization on
DMF, centered on the combination of digital microfluidics
and design-of-experiments to optimize the output yield. We
employed a method called OFAT (one-factor-at-a-time) to
determine the significant parameters that affect the output.
This method starts with automating the base experiment
followed by ‘n’-parameter variable experiments. The variable
experiments contain the base level parameters except that a
change is made to the level (increasing or decreasing) for one
of the parameters. Through statistical analysis, we determine
the most significant factors by comparing the variable with
the base case. Next, we obtain a database of output values to
develop a model to predict the optimal output using OFAT
and machine learning techniques. The new method was used
to implement a seven-parameter optimization of fluorination
labeling for [18F]FDG radiotracers. The resulting model
provided an ideal and a practical optimized protocol, which
reduced the synthesis time and improved the synthesis yield,
relative to those from previous work.7,22,25 More importantly,
these results establish the first report (to our knowledge) to
combine digital microfluidics and machine learning

algorithms enabling applications that require optimization of
screening conditions. We propose that the new methods
represent a useful development for users interested in using
digital microfluidics for their biological and chemical
screening applications.

Results and discussion
One-factor-at-a-time

In traditional digital microfluidic assays, several different
parameters are tested to optimize assay conditions performed
on DMF. These include titrating concentrations of all the
combined reagents as well as adjusting reaction times and
temperatures. As shown in Fig. 1A, the traditional approach
to finding the optimal assay conditions uses a trial-and-error
search process. The process starts by carefully choosing a set
of conditions either without a priori knowledge or with values
based on previously reported data. Given potentially vast
numbers of possible parameter combinations, it is not
practical to perform all experiments on the DMF device due
to device limitations (e.g., electrode density) and tedium
related to repeated device fabrication. Therefore, only a
subset of the optimization landscape is tested, and a sample
dataset is produced. However, this method does not help
predict optimal assay parameters, nor identify any critical
interactions between the parameters and the output.

Fig. 1 Assay optimization using digital microfluidics through traditional and one-factor-at-a-time (OFAT) approaches. (A) In the traditional
approach, a subset of the experiments is performed on DMF and through trial-and-error optimization an improved output is obtained with no
recommendation on the effects of each parameter. (B) OFAT uses a systematic approach – creating a base level experiment and comparing each
subsequent variable experiment to the base. This method reduces the number of experiments (compared to the traditional case) to achieve output
improvements and determines the significant parameters to generate a predictive model.
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Fig. 1B shows the use of one-factor-at-a-time (OFAT), a
systematic approach towards finding the optimal levels for
‘n’ parameters without requiring to perform a large set of
experiments. The method starts with designing a base level
for each parameter (values are either obtained from the
literature or randomly generated). Next, for each parameter,
we change the level of the parameter (increasing or
decreasing the base value) while keeping the other
parameters at the base level. Together with the base set, this
creates n + 1 experiments to be automated on the DMF
device. After obtaining the output from the variable case, we
compare with the base level output to determine the impact
(significant or non-significant) of each individual parameter
on the assay. The use of OFAT provides several advantages
compared to the traditional trial-and-error search process.
First, it significantly reduces the number of experiments that
need to be performed on the device. For example, a 33 full
factorial experiment requires 27 experiments (and 108 with
replicates41), but with OFAT, only 4 experiments (1 base case
with 3 variable cases; 12 experiments with 3 biological
replicates) are needed. Second, the parameters that affect the
assay can be determined after performing OFAT. As such, this
eliminates experiments with insignificant parameters, which
saves time and costs in relation to device fabrication and
assay preparation. Third, the method is compatible with any
biological and chemical-based assay that requires many
parameters and levels. Although we applied it to one type of
assay (see below), the same method can be applied to the
synthesis of other materials42,43 and to the metabolic
production of pharmaceutical compounds44 that require
optimization of multiple parameters and levels for optimal
output production.

We evaluated the OFAT method by employing
radiosynthesis of [18F]FDG7,22,25 on DMF using mannose
triflate as the substrate and performed fluorination of [18F] to
produce [18F]FDG (Fig. S1†). We used this assay to showcase
our method given that there are seven parameters to be
optimized (more than the typical assay performed on DMF)
and there are data presented in the literature such that we
can verify improvements in prediction accuracy and in the
overall yield. In these assays, it started with delivering the
[18F] via a syringe system to the reaction center on the device.
Next, the [18F] was activated through evaporation at 120 °C,
followed by dispensing droplets containing mannose triflate
and mixing with the evaporated [18F] at 85 °C. Deprotection
of the intermediate product was performed by hydrolysis with
sodium hydroxide at room temperature producing [18F]FDG.
We chose to produce [18F]FDG because this reaction has
several different parameters, and we believe that the yield
can be improved by using OFAT. Specifically, as shown by
previous authors, the synthesis is affected by seven
parameters.7,22,25 With each parameter broken intro 3
possible levels, we are required to automate 37 = 2187
reactions (without replicates) to obtain the full space of
experiments – a nearly impossible task with the current DMF
devices and fabrication methods. Using the OFAT approach,

we can significantly reduce the number of experiments that
are performed on the device and identify the significant
parameters that affect the yield. The results comparing the
traditional method with the OFAT method for optimizing
synthesis are recorded in Fig. 2.

As shown in Fig. 2, the [18F]FDG fluorination efficiency
results are shown for the different synthesis parameters for
the traditional and OFAT methods. In the traditional
approach, a base case was obtained by Keng et al.22 and Chen
et al.25 and the parameters were changed via
recommendation from previous work – lowering material
concentrations, reducing synthesis time (higher
temperatures, faster reaction), and optimizing the volume
ratio between the carrier molecules and [18F]fluoride. For
OFAT, eight experiments were created, starting from the same
base case as the traditional approach, and we created seven
variable experiments. Two key results were obtained from
OFAT. First, we observed significant changes in the
fluorination efficiency values for the variable output when
compared to the base level output. A t-test revealed
significant differences for parameters such as mannose
triflate and NaOH concentration, radiolabeling temperature,
and deprotection time (at 95% confidence level; P < 0.05)
except for radiolabeling time and deprotection temperature.
Second, OFAT resulted in a higher fluorination efficiency of
70.82 ± 1.54% compared to the traditional approach, which
after ten experiments, (see Table S1† for the complete list of
conditions), the best efficiency that we could obtain was
65.92%. The OFAT improvement is likely related to starting
with a careful choice of a base level.7,22,25 Regardless, the
data presented in Fig. 2 demonstrate that OFAT can help
identify the significant parameters which can be useful for
building a predictive model for the response as a function of
the input variable (see below) and for converging towards
maximizing the production of the output.

Constructing an output model with OFAT

A key advantage of OFAT is that we can apply machine
learning tools to produce a predictive model based on a small
experimental dataset. A database of output values (obtained
either from a standardized data depot45 or literature-based
output values) can be used to generate a single input linear
model (to determine the effects individual parameters have
on the synthesis yield), a multiple input linear model (to
determine interaction effects on the synthesis yield), or a
non-linear model (to determine high order effects) (Fig. 3).
Given that our radiosynthesis test case does not have
standardized data from an online database, we used both
experimentally derived and reported conditions22,25 to
generate a database of 55 experiments with 80% of values
used as the training set and 20% used as the test set (see
Table S2† for the database). The initial experimental
conditions were obtained from previous work and then were
followed based on the recommendations from the literature
and our own experience with the system. Toward the end of
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the optimization process, the experiments were more focused
around the optimum points, and as a result, our database of

values is distributed around the optimum point conditions.
This approach could create an imbalance and can overfit the

Fig. 2 Comparison of the fluorination efficiency using traditional optimization vs. OFAT approaches. (A) The traditional approach changes the
level of each parameter based on literature values. Each experiment (row) shows constant (red) and variable (blue) values. The constant values
represent the parameter values kept at levels found from the literature and the variables represent the parameter values changing towards
favorable conditions. For the full set of experiments performed, see Table S1.† (B) In OFAT, we use a base case (yellow) and create variable
experiments by changing the level of only one variable (blue) while keeping all other levels at the base case. The optimal fluorination efficiency
(blue) is obtained after 1 + 7 experiments. The t-values comparing the variable to the base case are shown in brackets beside the fluorination
efficiency.

Fig. 3 Schematic representation of the workflow to generate a predictive model based on the OFAT output. The workflow starts with the
implementation of OFAT to determine the significant parameters. We ran additional experiments changing significant parameters and generated a
linear regression and a neural network model based on the training subset (80%) of the database. We evaluated the model's performance by 10-
fold cross validation and comparison of root mean square error values for both models with single and multivariable inputs. We also evaluated the
best model with the test data (the 20% subset of database). The best conditions were found through solving the final model for 100% yield.
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model and the model can be biased in favor of the majority
datapoints.46,47 To circumvent this issue, which is common
in many applications that do not have a large-set of
values46,48 (e.g., disease diagnosis49), an oversampling
algorithm was implemented to minimize the number of
performed experiments. The algorithm replicates datapoints
for conditions that have at least one “rare” (i.e., less frequent)
tested condition (see Table S2† for ‘rare’ conditions) in the
training dataset to improve the data distribution balance and
to prevent model bias and overfitting towards the more
frequent datapoints.49–51 Each training set was 10-fold cross-
validated with one test case and each were fitted to the linear
or the neural network derived (non-linear) models. These
models were evaluated by calculating the root-mean square
error (RMSE) and provided a method to validate OFAT (i.e.,

the significant parameters) and to generate a predictive
model for the response as a function of the input parameters.
In this work, the fluorination efficiency from the assays was
used as the output response with seven input parameters.

The RMSE values generated from the training data and
test data for the linear and non-linear models are shown in
Fig. 4A. A linear regression was fitted to the experimental
output in the single input linear model (Fig. S2†), which
resulted in a range of RMSE values between 13.89 ± 1.1 and
15.53 ± 1.3 for the training data. In addition, the single
model was evaluated with the test data, and as expected, the
model showed relatively higher errors than the training data.
The single model also falls short on accurately predicting the
fluorination efficiency (see Fig. S3†), which suggests that
using a single parameter model approach is not the ideal

Fig. 4 Modeling of fluorination efficiency. (A) The root mean square errors for the nonlinear regression model and linear regression model with
either all the variables or a single variable as the input. (B) Comparison of linear and nonlinear model performance. (C) Comparison of OFAT with
the multiple linear regression model. Parameters are ordered based on their level of significance (t-values).
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case to predict the fluorination efficiency output. However, a
multiple interaction model that considers all the variables for
fluorination efficiency shows decreases in the RMSE for the
training (11.47 ± 1.0) and test (11.71) datasets. In fact, using
our model against a test dataset (i.e., unseen parameter
conditions), the accuracy was higher compared to the best-
performing single model (Fig. 4B). We also hypothesized that
using a non-linear regression model (higher-order factors)
would improve the accuracy; however, as shown, the non-
linear model showed similar accuracy (RMSE for the training
11.54 ± 1.2 and test 13.26) compared to the single model,
which is likely due to the limited number of experiments
available in our database.52

From OFAT we identified significant factors via the t-test
for base and variable cases. Using the multiple linear
regression model, we verified the significant factors from
OFAT by estimating the model's coefficients. As shown in
Fig. 4C, we ordered the most significant factors by increasing
t-values, with the most substantial effects determined from
OFAT at the top. Generally, the highest coefficient from our
multiple linear models matches with the significant factors
determined by OFAT. For deprotection temperature, we
calculated a relatively higher coefficient in contrast to what
we expected from OFAT t-values. There are a number of
potential causes for the difference: (1) a limited number of
experiments and levels (25–50 °C) were studied with the
parameter and (2) to train an accurate model requires a
relatively large dataset (>1000s).32,53 However, we expect the
accuracy to improve if more replicates or levels are
automated. In these cases, we can still leverage the OFAT
(only using the significant parameters) and machine learning
approach that we developed here.

Improving radiosynthesis yield

Interestingly, OFAT and the model suggest that there are only
five parameters that are significant to FDG incorporation.

The parameters, NaOH concentration, mannose triflate
concentration, radiolabeling temperature and mannose to
[18F] volume ratio have significant positive coefficients;
increasing these parameters results in higher FDG
incorporation. Having a negative coefficient for deprotection
time suggests that a shorter deprotection time coupled with
higher concentrations, volume ratios, and radiolabeling
temperature will increase the final FDG incorporation.
However, increasing concentrations, volume ratios, and
radiolabeling temperature will practically require longer
deprotection time25 and therefore the increase will eventually
plateau. In the completed model, constructed from only the
significant parameters and coefficients (Fig. S4†), we used it
to predict the optimal FDG incorporation value. We used the
model to predict 100% fluorination efficiency and the
maximum was achieved when we used an equal ratio of
mannose/[18F] volume, 90 mM mannose triflate, 110 °C
radiolabeling temperature, 5 minutes for radiolabeling time,
1.4 M NaOH, and 10 minutes at 50 °C for deprotection,
(Fig. 5A). However, these conditions for radiosynthesis were
nearly impossible to implement to completion on chip. For
example, increasing the temperature from room to 100 °C
causes several of the reagent droplets to decrease in droplet
movement fidelity on the device (Fig. S5†). When droplets
contained 1.4 M NaOH, the movement fidelity was poor (data
not shown), which prevented the completion of the
radiosynthesis process. Also, evaporation occurs faster at 110
°C for the concentrated mannose triflate, which makes
droplet movement nearly impossible. Similar conditions were
obtained for the 90 and 95% incorporation; however,
experimental success was shown for the 85% model
incorporation, which produced a similar fluorination
efficiency value of 84.1%.

Surprisingly, the conditions derived at 85% were very
similar to the OFAT optimal conditions (the only difference
being the mannose triflate concentration 30 vs. 80 mM). This
improvement is likely related to starting with a base case that

Fig. 5 Optimal fluorination efficiency. (A) Comparing the fluorination efficiency for [18F]FDG radiosynthesis through OFAT and predictive modeling
based on the significant parameters. Model conditions that were not practically possible to automate on our DMF device are highlighted in red.
The optimal conditions obtained from OFAT (yellow) and the model (blue) are shown. (B) Graphical illustration comparing the total crude
radiochemical yield achieved by OFAT assay optimization and comparing it with previous publications.7,22,25 The total crude radiochemical yield is
determined by the product of the fluorination efficiency and the radioactivity recovery (94.1%; Table S3†).
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is already close to the optimal conditions. A comparison of
our method and previous work is presented in Fig. 5B. As
shown, with the improved DMF design and the developed
screening (OFAT) and optimization (ML) methods, the overall
synthesis yield from OFAT resulted in an improved yield of
66.64% and a further increase to 79.13% with ML modeling.
The overall synthesis time (∼ 19 ± 2 min; n = 6) also
exhibited better performance compared to previous work.
These improvements are critical, as increasing overall yield
and reducing synthesis time provide the capability to supply
more doses available for patients at the end of the
synthesis.54

A final goal of the work was to demonstrate that our new
method can be combined with other protocols and
techniques to optimize the radiochemical yield. Optimization
of the [18F]FDG yield efficiency is a continuous challenge due
to the short half-life of [18F]. There have been multiple efforts
towards developing automation systems,7,22,25,55 improving
reagent delivery mechanisms,54–56 and integrating interfaces
to couple with chromatography systems for purification57–59

to speed up the delivery of the tracer to the patient. We
designed an on-chip purification scheme that purifies the
sample immediately after synthesis. Discs with 2 or 6 mm
diameter were created with alumina beads mixed with the
PDMS elastomer prior to curing and directly placed on the
DMF device (Fig. S6A†). After synthesis, the droplet with the
incorporation of [18F]FDG was brought to the disc for
incubation and moved around the adjacent electrodes to
enhance the purification process of removing both the
Kryptofix and unreacted [18F] and F−. After incubation, the
droplet was actuated away from the disc and manually
pipetted for downstream processing. Using this technique,
we observed high purity (∼93.05 ± 2.46%) with 6 mm discs
incubated for over 40 minutes (Fig. S6B†). All the final
optimized results related to radioactive recovery,
incorporation, and purity are shown in Table S3 in the ESI.†
To our knowledge, this work is the first to integrate
radiotracer synthesis with on-chip purification and to use
OFAT optimization and ML modelling.

Experimental
Reagents, chemicals, and equipment

Microfabrication materials. For digital microfluidic
devices, a high resolution 25 400 dpi transparent photomask
(CAD/Art Services Inc., Bandon, OR), AZ1500 positive
photoresist coated glass slides (Telic, Valencia, CA, USA), a
CR-4 chromium etchant (OM Group, Cleveland, OH, USA), an
AZ-300 T photoresist stripper (Integrated Micro Materials,
Argyle, TX, USA), an MF321 developer (Kayaku Advanced
Materials, Westborough, MA, USA), gamma-
methacryloxypropyl trimethoxysilane (Silane A-174) and
parylene C pellets (Specialty Coating Systems Inc.,
Indianapolis, IN, USA), Teflon™ AF 1600 (The Chemours
Company, Wilmington, DE, USA), and indium tin oxide
(ITO)-coated glass slides, RS = 15–25 Ω (cat no. CG-61IN-S207,

Delta Technologies, Loveland, CO, USA) were used.
Additional solvents and chemicals used for microfluidic chip
fabrication, including acetone (cleanroom lab grade) and
isopropanol (IPA, cleanroom lab grade), were purchased from
Sigma-Aldrich (Oakville, ON, CA). The polylactic acid (PLA)
material for 3D printing was purchased from Shop3D
(Mississauga, ON, CA), and polydimethylsiloxane (PDMS)
from Krayden Inc. (Westminster, CO, USA). DI water had a
resistivity of 15 MΩ cm−1.

Radiosynthesis reagents. All reagents and chemicals for
radiosynthesis including anhydrous acetonitrile (MeCN,
99.8%), potassium carbonate (99.9%), mannose triflate for
PET imaging ≥98% (TLC), 4,7,13,16,21,24-hexaoxa-1,10-
diazabicyclo[8.8.8]hexacosane (98%) (Kryptofix K222), and
sodium hydroxide (NaOH, 1N) were purchased from Sigma-
Aldrich (Oakville, ON, CA) and used as received without
further purification. Sep-Pak® Accell Plus QMA Plus Light
cartridges and neutral alumina (50–300 μm particle size) were
purchased from Waters Corporation (Milford, MA, USA). No-
carrier-added [18F]fluoride ion was obtained from the
McConnell Brain Imaging Centre Cyclotron Facility by
irradiation of 98% [18O]-enriched H2O with 18 MeV proton
beam using a cyclone 18/9 (Ion Beam Applications (IBA),
Louvain-la-Neuve, Belgium).

Equipment. Gastight syringes were purchased from
Hamilton (1002 C, Reno, NV, USA), and a TEC/Peltier module
from TE technology (Traverse City, MI, USA). A vortex mixer
(Vortex Genie 2, Scientific Industries, Bohemia, NY, USA) was
used for off-chip preparation of reagents. The radioactivity of
the samples was measured using a dose calibrator (CRC 55
TR Capintec Inc., Ramsey, NJ, USA). A radioactive thin layer
chromatography scanner (MiniGITA star, Raytest USA Inc.,
Wilmington, NC, USA) was used to analyze the fluorination
efficiency of the crude product spotted on silica TLC plates
(Silica Gel HLF 250 μm 10 × 20 cm scored) (Analtech Inc.,
Newark, DE, USA). The identity and purity of [18F]fluoride
were determined using a gamma ray spectrometer
(manufactured in-house).

Device fabrication and operation

Fabrication. Batches of microfluidic chips were fabricated
using 2″ × 3″ chromium coated glass slides using standard
photolithographic processes previously reported.3,60 A Quintel
Q-4000 mask aligner (Neutronix Quintel, Morgan Hill, CA,
USA) was used for UV exposure. A schematic of the digital
microfluidic device structure is shown in ESI† Fig. S1. After
the photolithography process, the devices were immersed in
a silane solution comprising de-ionized water, 2-propanol,
and gamma-methacryloxypropyl trimethoxysilane (50 : 50 : 1 v/
v) in a Pyrex dish for 15 min followed by a thorough rinse
with 2-propanol and water, air drying, and baking on a
hotplate at 80 °C.

The devices were coated with 15 g of parylene-C (7 μm) as
a dielectric layer in a SCS Labcoater 2 PDS 2010 (Specialty
Coating Systems, Indianapolis, IN, USA) and then coated with
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Teflon™ AF 1600 (150 nm) in a Laurell spin coater (North
Wales, PA, USA) set to 1500 rpm for 60 s with 300 rpm s−1

acceleration followed by 10 min baking at 165 °C. For the
electrical ground plate, ITO-coated glass slides were cut into
1″ × 3″, coated with Teflon™ AF 1600 by spin coating, and
then post-baked as described above. The ITO plate was then
placed on top of the substrate separated with two pieces of
double-sided tape (3M), resulting in an inter-plate gap of
∼140 μm.

For automated radiotracer synthesis, we used our
automation system containing optocoupler switches, a
thermoelectric device, and a reagent delivery system (see Fig.
S7–S9† for temperature and reagent delivery control setups).
Briefly, the thermoelectric device was controlled using an
Arduino microcontroller (Arduino Uno, Italy) and a driver
motor consisting of a two half-bridge driver chip and a low
resistance N-channel MOSFET (Amazon, Mississauga, ON,
Canada) following Perry et al.1,60 The reagent delivery system
was built using a stepper motor that was also connected and
controlled using an Arduino microcontroller.1 Droplet
operation was controlled using our open-source software
(see: https://bitbucket.org/shihmicrolab/f_ahmadi_2022) that
was used to apply high-voltage potentials to a stack of
optocoupler switches (the design of the stack was described
elsewhere61).

To prepare for radiotracer synthesis on the device, a DMF
device (only the bottom plate) was loaded onto a pogo-pin
holder consisting of 104 pogopins with a spacing of 3 mm
which will deliver 104 individual voltage inputs to the contact
pads of the device to apply a sine wave 160 VRMS potential at
15 kHz between the top and bottom plates. The 14.8 × 14.8
mm2 thermoelectric device was directly placed below the
bottom plate and will provide heating and cooling to 10
central electrodes on the device, which we set as the ‘reaction
site’ (Fig. S1†). A syringe tube was fixed with tape on the
pogo-pin holder and directed to the central electrode in the
reaction site to deliver the radioisotope. After evaporation of
[18F]fluoride (∼ 10 min), an ITO top plate was placed on top
of the bottom substrate such that the edges of the ITO were
aligned to the edges of the reservoir electrodes and were
affixed by two pieces of double-sided tape. For purification
experiments, discs were sandwiched between the top and
bottom plates and aligned with a set of five electrodes, which
we refer to as the ‘purification site’. When the bottom-plate
was secured by the pogo pin holder and top-plate, reagent
reservoirs were loaded by pipetting the reagents at the edge
of the reservoir with the same applied voltage and frequency
as above to draw the liquids into the reservoirs.

One factor at a time and predictive modeling

One-factor-at-a-time consisted of optimizing seven parameters
(mannose triflate to [18F]fluoride volume ratio, mannose
triflate concentration, sodium hydroxide concentration,
radiolabeling temperature, deprotection temperature,
radiolabeling time, deprotection time) that will potentially

influence the FDG fluorination efficiency. The approach – also
known as “OFAT” – started with base values for each parameter
which was taken a priori from previous studies.22,25,62,63 Using
base values, we performed the radiotracer synthesis on the chip
(as described below) to determine the deprotected FDG
fluorination efficiency. Ten pilot experiments (see Table S1†)
were performed with the initial values to obtain an average
objective value (i.e., the average deprotected fluorination
efficiency value). Next, a series of seven radiosynthesis
experiments were performed, and only one of the variables was
changed to a new value with the remaining six variables set to
the base values. The new fluorination efficiency values were
compared to the objective and were designated an impact value
(increase, decrease, or no impact) by calculating p-values of
one-sample t-test (one-tailed), and p < 0.05 was considered as
the cutoff for significance.

To create a predictive model based on the “OFAT”
experiments, we generated a database of 55 reactions. Each
reaction set contained different levels for the significant
parameters and the base level for the non-significant factors.
We performed all reactions on the chip to determine the
observed FDG fluorination efficiency value (see Table S2†). As
shown, input parameters except for deprotection temperature
and radiolabeling temperature have imbalanced distribution
in the dataset. Data points outside the most frequent
conditions are considered ‘rare’ data. For example, data
points with NaOH concentration lower than 1M are
considered a ‘rare’ condition since only one experiment was
performed with this condition. The experimental data having
at least one input parameter with rare frequency in the
training dataset for our work were replicated to improve the
data distribution balance (a method shown for other
studies50,51 that only have few experimental datapoints).
These collected experimental data points (experimental
conditions and their resulting FDG fluorination efficiency)
were used to fit a linear and a non-linear regression model to
study the effect of the reaction parameters on the FDG
incorporation.

The database was randomly divided into two sets: (1) a
training set (80% of data) to generate the model and (2) a test
set (20% of data) to evaluate the model's performance. Input
data were standardized by subtracting the mean value and
scaling to unit standard variation using eqn (1) below:

Standardized data ¼ Original data −Meanoriginal data

Standard deviationoriginal data
(1)

The model was trained using a 10-fold cross validation
technique,64 which partitions the training set into 10
different subsets and iteratively trains the model on 9 subsets
while the remaining set was used as the validation set. The
training goal was to minimize squared error between the
measured fluorination efficiency and the predicted value.
The model was tested with the independent, random test
group. The mean absolute error and root mean squared error
were calculated to measure the performance of the models.
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Seven linear models were trained where only one
parameter was used as the input. In comparison, a multiple
linear regression model was trained with all seven variables
as the input. The linear models followed eqn (2):

FDG fluorination efficiency = m→·x→ + b (2)

where

x!¼

Mannose triflate
18 F

Volume ratio;

Mannose triflate concentration;

Radio labeling temperature;

Radio labeling time;

NaOH concentration;

Deprotection temperature;

Deprotection time

2
66666666666664

3
77777777777775

The reported coefficients for the final linear models were
obtained by using the whole database including training and
test sets (55 data points presented in Table S2†). To prevent
overfitting, the linear models were obtained using Ridge
regression of the scikit-learn library.65 This method
performed L2 regularization and the optimum regularization
factor was found using the grid search cv algorithm from the
scikit-learn library.65

A multi-layer feed-forward neural network was
implemented using the Keras library (https://github.com/
fchollet/keras66) for non-linear regression analysis. The
artificial neural network consisted of an input layer of 7
neurons for the 7 experimental parameters and an output
layer with a single node to represent the predicted FDG
incorporation yield. A dense hidden layer of 4 neurons with a
rectified linear unit (ReLU) activation function was used to
add non-linearity to the regression model. Also, in the hidden
layer, L2 regularization was used to prevent overfitting of the
model to the training dataset.47 In L2 regularization, squared
magnitude of the layer weights is added to the loss function
as a penalty term. In this way, it forces the weights to be
small to prevent overfitting.47 The regularization factor and
the learning rate of the Adam optimizer were optimized using
the grid search cv algorithm from the scikit-learn library.65

The optimized values were 0.5 and 1 for the regularization
factor and learning rate, respectively. 10-fold cross-validation
(scikit-learn library) was used to measure the model
performance.65 The final model (trained with all the training
data) was further tested with the separate test data. The
performance of the models was reported in terms of the root
mean squared error as shown above.

Conclusion

In summary, we report the first demonstration of “OFAT” on
a DMF device with an application to reduce the number of
experiments required for assay optimization. This new

approach studies the effect of each influential parameter on
the assay output and provides recommendation on how to
systematically select a subset of multifactorial experiments
and run on the device for assay optimization. We anticipate
that this new method combined with a digital microfluidic
platform can be broadly used by researchers seeking to
greatly speed up any biological, chemical, pharmaceutical
assay optimization.

Author contributions

This research was designed by FA, HB, JPS, GM, and SCCS.
All experiments and analyses were conducted by FA and
SCCS. Machine learning algorithms, including OFAT and
the predictive model, were developed and analyzed by MS
and FA. JMP designed the setup of the automation
hardware and software and helped FA with automation
experiments. SF trained and helped FA with radiation safety
and setup. All authors wrote, revised, and reviewed the
manuscript.

Conflicts of interest

There are no conflicts of interest to declare.

Acknowledgements

We would like to thank the radiochemistry team at the
McConnell Brain Imaging Centre for granting us access to
radiochemistry facilities and for providing us with the [18F]
fluoride radioisotope and organic solvents. Specifically, we
would like to thank Dr. Robert Hopewell, Dr. Dean Jolly,
and Dr. Alexey Kostikov for radiosynthesis training and
technical support at the McConnell Brain Imaging Centre.
We also like to thank Nicholash Bedi and Ann-Fleur
Lobbezoo for fruitful discussion regarding the modeling and
purification work, respectively. We thank the Natural
Sciences and Engineering Research Council (NSERC), the
Fonds de Recherche Nature et technologies (FRQNT), and
the Canadian Foundation of Innovation (CFI) for funding.
FA thank the Concordia University Department of Electrical
and Computer Engineering for FRS and FRQNT PBEEE for
funding. SCCS thanks Concordia for a University Research
Chair.

References

1 J. M. Perry, G. Soffer, R. Jain and S. C. C. Shih, Lab Chip,
2021, 21, 3730–3741.

2 H. Sinha, A. B. V. Quach, P. Q. N. Vo and S. C. C. Shih, Lab
Chip, 2018, 18, 2300–2312.

3 L. M. Y. Leclerc, G. Soffer, D. H. Kwan and S. C. C. Shih,
Biomicrofluidics, 2019, 13, 034106.

4 M. C. Husser, P. Q. N. Vo, H. Sinha, F. Ahmadi and S. C. C.
Shih, ACS Synth. Biol., 2018, 7, 933–944.

5 A. B. V. Quach, S. R. Little and S. C. C. Shih, Anal. Chem.,
2022, 94, 4039–4047.

Lab on a Chip Paper

Pu
bl

is
he

d 
on

 2
3 

N
ov

em
be

r 
20

22
. D

ow
nl

oa
de

d 
on

 1
/1

8/
20

23
 5

:2
4:

33
 P

M
. 

View Article Online

https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://doi.org/10.1039/d2lc00764a


90 | Lab Chip, 2023, 23, 81–91 This journal is © The Royal Society of Chemistry 2023

6 H. Wang, L. Chen and L. Sun, Front. Mech. Eng., 2017, 12,
510–525.

7 J. Wang, P. H. Chao, S. Hanet and R. M. van Dam, Lab Chip,
2017, 17, 4342–4355.

8 Z. Gu, M.-L. Wu, B.-Y. Yan, H.-F. Wang and C. Kong, ACS
Omega, 2020, 5, 11196–11201.

9 S. C. Kim, I. C. Clark, P. Shahi and A. R. Abate, Anal. Chem.,
2018, 90, 1273–1279.

10 B. Wu, S. von der Ecken, I. Swyer, C. Li, A. Jenne, F. Vincent,
D. Schmidig, T. Kuehn, A. Beck, F. Busse, H. Stronks, R.
Soong, A. R. Wheeler and A. Simpson, Angew. Chem., Int. Ed.,
2019, 58, 15372–15376.

11 R. Fobel, C. Fobel and A. R. Wheeler, Appl. Phys. Lett.,
2013, 102, 193513.

12 P. Q. N. Vo, M. C. Husser, F. Ahmadi, H. Sinha and S. C. C.
Shih, Lab Chip, 2017, 17, 3437–3446.

13 M. J. Jebrail, M. S. Bartsch and K. D. Patel, Lab Chip,
2012, 12, 2452–2463.

14 M. Abdelgawad and R. Wheeler Aaron, Adv. Mater., 2008, 21,
920–925.

15 M. J. Jebrail and A. R. Wheeler, Curr. Opin. Chem. Biol.,
2010, 14, 574–581.

16 D. Chatterjee, H. Shepherd and R. L. Garrell, Lab Chip,
2009, 9, 1219–1229.

17 N. Grant, B. Geiss, S. Field, A. Demann and T. W. Chen,
Micromachines, 2021, 12(9), 1065.

18 H. Norian, R. M. Field, I. Kymissis and K. L. Shepard, Lab
Chip, 2014, 14, 4076–4084.

19 R. Sista, Z. Hua, P. Thwar, A. Sudarsan, V. Srinivasan, A.
Eckhardt, M. Pollack and V. Pamula, Lab Chip, 2008, 8, 2091.

20 R. S. Sista, R. Ng, M. Nuffer, M. Basmajian, J. Coyne, J.
Elderbroom, D. Hull, K. Kay, M. Krishnamurthy, C. Roberts,
D. Wu, A. D. Kennedy, R. Singh, V. Srinivasan and V. K.
Pamula, Diagnostics, 2020, 10(1), 21.

21 B. B. Li, E. Y. Scott, M. D. Chamberlain, B. T. V. Duong, S.
Zhang, S. J. Done and A. R. Wheeler, Sci. Adv., 2020, 6,
eaba9589.

22 P. Y. Keng, S. Chen, H. Ding, S. Sadeghi, G. J. Shah, A.
Dooraghi, M. E. Phelps, N. Satyamurthy, A. F.
Chatziioannou, C. J. Kim and R. M. van Dam, Proc. Natl.
Acad. Sci. U. S. A., 2012, 109, 690–695.

23 M. Torabinia, U. S. Dakarapu, P. Asgari, J. Jeon and H.
Moon, Sens. Actuators, B, 2021, 330, 129252.

24 M. Torabinia, P. Asgari, U. S. Dakarapu, J. Jeon and H.
Moon, Lab Chip, 2019, 19, 3054–3064.

25 S. Chen, M. R. Javed, H. K. Kim, J. Lei, M. Lazari, G. J. Shah,
R. M. van Dam, P. Y. Keng and C. J. Kim, Lab Chip, 2014, 14,
902–910.

26 B. Hadwen, G. R. Broder, D. Morganti, A. Jacobs, C. Brown,
J. R. Hector, Y. Kubota and H. Morgan, Lab Chip, 2012, 12,
3305–3313.

27 Y. Xing, Y. Liu, R. Chen, Y. Li, C. Zhang, Y. Jiang, Y. Lu, B.
Lin, P. Chen, R. Tian, X. Liu and X. Cheng, Lab Chip,
2021, 21, 1886–1896.

28 S. Anderson, B. Hadwen and C. Brown, Lab Chip, 2021, 21,
962–975.

29 S. von der Ecken, A. A. Sklavounos and A. R. Wheeler, Adv.
Mater. Technol., 2021, 2101251.

30 C. Dixon, A. H. Ng, R. Fobel, M. B. Miltenburg and A. R.
Wheeler, Lab Chip, 2016, 16, 4560–4568.

31 B. F. Bender and R. L. Garrell, Micromachines, 2015, 6(11),
1655–1674.

32 A. Lashkaripour, C. Rodriguez, N. Mehdipour, R. Mardian,
D. McIntyre, L. Ortiz, J. Campbell and D. Densmore, Nat.
Commun., 2021, 12, 25.

33 C. Wang, C. Wang, Y. Wu, J. Gao, Y. Han, Y. Chu, L. Qiang, J.
Qiu, Y. Gao, Y. Wang, F. Song, Y. Wang, X. Shao, Y. Zhang
and L. Han, Adv. Healthcare Mater., 2022, 2102800.

34 V. Anagnostidis, B. Sherlock, J. Metz, P. Mair, F. Hollfelder
and F. Gielen, Lab Chip, 2020, 20, 889–900.

35 D. McIntyre, A. Lashkaripour, P. Fordyce and D. Densmore,
Lab Chip, 2022, 22(16), 2925–2937.

36 S. Momtahen, F. Al-Obaidy and F. Mohammadi, IEEE
Canadian Conference of Electrical and Computer Engineering
(CCECE), 2019, pp. 1–6.

37 D. M. Chadly, A. M. Oleksijew, K. S. Coots, J. J. Fernandez, S.
Kobayashi, J. A. Kessler and A. J. Matsuoka, SLAS Technol.,
2018, 24, 41–54.

38 A. Avoundjian, M. Jalali-Heravi and F. A. Gomez, Anal.
Bioanal. Chem., 2017, 409, 2697–2703.

39 C. R. F. Caneira, R. R. G. Soares, K. Nikolaidou, M. Nilsson,
N. Madaboosi, V. Chu and J. P. Conde, IEEE 34th
International Conference on Micro Electro Mechanical Systems
(MEMS), 2021, pp. 575–578.

40 H. T. Nguyen, L. N. Dupont, E. A. Cuttaz, A. M. Jean, R.
Trouillon and M. A. M. Gijs, Microelectron. Eng., 2018, 189,
33–38.

41 K. Choi, A. H. Ng, R. Fobel, D. A. Chang-Yen, L. E. Yarnell,
E. L. Pearson, C. M. Oleksak, A. T. Fischer, R. P. Luoma,
J. M. Robinson, J. Audet and A. R. Wheeler, Anal. Chem.,
2013, 85, 9638–9646.

42 J. Ma, Y. Wang and J. Liu, Micromachines, 2017, 8(8),
255.

43 M. B. Kulkarni and S. Goel, Nano Express, 2020, 1,
032004.

44 M. E. Pyne, K. Kevvai, P. S. Grewal, L. Narcross, B. Choi, L.
Bourgeois, J. E. Dueber and V. J. J. Martin, Nat. Commun.,
2020, 11, 3337.

45 W. C. Morrell, G. W. Birkel, M. Forrer, T. Lopez, T. W. H.
Backman, M. Dussault, C. J. Petzold, E. E. K. Baidoo, Z.
Costello, D. Ando, J. Alonso-Gutierrez, K. W. George, A.
Mukhopadhyay, I. Vaino, J. D. Keasling, P. D. Adams, N. J.
Hillson and H. Garcia Martin, ACS Synth. Biol., 2017, 6,
2248–2259.

46 S. Kotsiantis, D. Kanellopoulos and P. Pintelas, GESTS
International Transactions on Computer Science and
Engineering, 2006, vol. 30, pp. 25–36.

47 X. Ying, J. Phys.: Conf. Ser., 2019, 1168, 022022.
48 H. Han, W. Y. Wang and B. H. Mao, Borderline-SMOTE: A

New Over-Sampling Method in Imbalanced Data Sets
Learning, International conference on intelligent computing,
2005, pp. 878–887.

Lab on a ChipPaper

Pu
bl

is
he

d 
on

 2
3 

N
ov

em
be

r 
20

22
. D

ow
nl

oa
de

d 
on

 1
/1

8/
20

23
 5

:2
4:

33
 P

M
. 

View Article Online

https://doi.org/10.1039/d2lc00764a


Lab Chip, 2023, 23, 81–91 | 91This journal is © The Royal Society of Chemistry 2023

49 R. Mohammed, J. Rawashdeh and M. Abdullah, Machine
learning with oversampling and undersampling techniques:
overview study and experimental results, 11th international
conference on information and communication systems (ICICS),
2020, pp. 243–248.

50 T. Zhu, Y. Lin, Y. Liu, W. Zhang and J. Zhang, Knowl.-Based
Syst., 2019, 166, 140–155.

51 M. Hayati, S. Mutmainah and S. Ghufran, Int. J. Artif. Intell.,
2021, 4, 86.

52 G. Cumming, F. Fidler and D. L. Vaux, J. Cell Biol.,
2007, 177, 7–11.

53 T. Radivojević, Z. Costello, K. Workman and H. Garcia
Martin, Nat. Commun., 2020, 11, 4879.

54 A. M. Elizarov, R. M. van Dam, Y. S. Shin, H. C. Kolb, H. C.
Padgett, D. Stout, J. Shu, J. Huang, A. Daridon and J. R.
Heath, J. Nucl. Med., 2010, 51, 282–287.

55 C. C. Lee, G. Sui, A. Elizarov, C. J. Shu, Y. S. Shin, A. N.
Dooley, J. Huang, A. Daridon, P. Wyatt, D. Stout, H. C.
Kolb, O. N. Witte, N. Satyamurthy, J. R. Heath, M. E.
Phelps, S. R. Quake and H. R. Tseng, Science, 2005, 310,
1793–1796.

56 H. Ding, S. Sadeghi, G. J. Shah, S. Chen, P. Y. Keng,
C. J. Kim and R. M. van Dam, Lab Chip, 2012, 12,
3331–3340.

57 S. Chen, A. A. Dooraghi, M. Lazari, R. M. V. Dam, A. F.
Chatziioannou and C. C. Kim, IEEE 27th International

Conference on Micro Electro Mechanical Systems (MEMS),
2014, pp. 284–287.

58 S. Chen, J. Lei, R. Van Dam, P.-Y. Keng and C.-J. Kim, Planar
alumina purification of 18F-labeled radiotracer synthesis on
EWOD chip for positron emission tomography (PET), 2012.

59 M. D. Tarn, G. Pascali, F. De Leonardis, P. Watts, P. A.
Salvadori and N. Pamme, J. Chromatogr. A, 2013, 1280,
117–121.

60 E. Moazami, J. M. Perry, G. Soffer, M. C. Husser and S. C. C.
Shih, Anal. Chem., 2019, 91, 5159–5168.

61 F. Ahmadi, K. Samlali, P. Q. N. Vo and S. C. C. Shih, Lab
Chip, 2019, 19, 524–535.

62 P. Y. Keng and R. M. van Dam, Mol. Imaging, 2015, 14,
13–14.

63 J. Wang, P. H. Chao and R. M. van Dam, Lab Chip, 2019, 19,
2415–2424.

64 R. Kohavi, A study of cross-validation and bootstrap for
accuracy estimation and model selection, International Joint
Conference on Artificial Intelligence (IJCAI), 1995, vol. 14, no.
2, pp. 1137–1145.

65 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.
Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V.
Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.
Brucher, M. Perrot and É. Duchesnay, J. Mach. Learn. Res.,
2011, 12, 2825–2830.

66 F. Chollet, Keras, 2015, https://github.com/fchollet/keras.

Lab on a Chip Paper

Pu
bl

is
he

d 
on

 2
3 

N
ov

em
be

r 
20

22
. D

ow
nl

oa
de

d 
on

 1
/1

8/
20

23
 5

:2
4:

33
 P

M
. 

View Article Online

https://github.com/fchollet/keras
https://doi.org/10.1039/d2lc00764a

	crossmark: 


